New tantalum compounds supported by 3,3'-disubstituted-1,1'-bi-2naphthoxide ligation \dagger

Matthew G. Thorn, John E. Moses, Phillip E. Fanwick and Ian P. Rothwell*
Department of Chemistry, 1393 Brown Building, Purdue University, West Lafayette, IN 47907-1393, USA. E-mail: rothwell@purdue.edu

Received 7th June 2000, Accepted 14th July 2000
Published on the Web 28th July 2000

Several tantalum compounds supported by $3,3^{\prime}$-disub-stituted-1,1'-bi-2-naphthol derived ligands have been prepared and initial aspects of their reactivity studied.

The use of ortho-substituted phenoxide ligands (ArO) to support organometallics at niobium and tantalum metal centers has proven very successful. ${ }^{1}$ However, to date few examples of asymmetric versions of this $\left[(\mathrm{ArO})_{2} \mathrm{M}\right](\mathrm{M}=\mathrm{Nb}, \mathrm{Ta})$ based chemistry have been reported although we ${ }^{2}$ and others ${ }^{3}$ have recently reported on the use of chiral ortho-(1-naphthyl)phenoxides as ancillary ligands. However, while the important chiral auxiliary 1,1 '-bi-2-naphthol has found applications in many areas of asymmetric transition metal chemistry, ${ }^{4}$ the niobium and tantalum chemistry of this ligand appears to be underdeveloped. We report here, some of our initial results on the chemistry of $3,3^{\prime}$-disubstituted derivatives of this ligand system with tantalum.
We have prepared a number of parent 3,3'-disubstituted ligands 1-3 (Scheme 1) via straightforward literature methods

1: $\mathrm{R}=\mathrm{SiMe}_{3}$

2a: $R=S i M e_{2} P h$
2b $R=S i M e P h$
Scheme 1
using either resolved or racemic versions of $2,2^{\prime}$-dihydroxy-1,1'-binaphthol. ${ }^{5}$ Reaction of $\left[\mathrm{Ta}_{2} \mathrm{Cl}_{10}\right]$ with $\mathbf{1 - 3}$ or their dilithium or dipotassium salts lead to an as yet unidentified mixture (NMR) of products. However, reaction of [Ta$\left.\left(\mathrm{NMe}_{2}\right)_{5}\right]^{6}$ with 1-3 afforded compound 4-7 as yellow solids in high yields (Scheme 2) \ddagger The solution NMR spectroscopic properties of 4-7 indicate the presence of coordinated $\mathrm{Me}_{2} \mathrm{NH}$, formed from the protonolysis reaction between 1-3 and $\left[\mathrm{Ta}\left(\mathrm{NMe}_{2}\right)_{5}\right]$, as well as a single resonance for the three $\mathrm{Ta}-$ NMe_{2} groups. The coordination of the amine appears to be

(S)-4: $\mathrm{R}=\mathrm{SiMe}_{3}$ shown; $(\mathrm{R})-5: \mathrm{R}=\mathrm{SiMe}_{2} \mathrm{Ph}$
$(R)-6: R=\operatorname{SiMePh}_{2}(R, S)-7: R=\mathrm{SiPh}_{3}$
Scheme 2
\dagger Electronic supplementary information (ESI) available: preparation and spectroscopic data for compounds 4-11. See http://www.rsc.org/ suppdata/dt/b0/b005681m/

Fig. 1 Molecular structure of $(S)-4$ showing the atomic numbering scheme. Selected interatomic distances (\AA) and angles $\left({ }^{\circ}\right): \mathrm{Ta}-\mathrm{O}(1)$ 2.036(4), $\mathrm{Ta}-\mathrm{O}(2) 2.039(3), \mathrm{Ta}-\mathrm{N}(3) 2.006(5), \mathrm{Ta}-\mathrm{N}(4) 2.009(5), \mathrm{Ta}-$ $\mathrm{N}(5) 2.000(5), \mathrm{Ta}-\mathrm{N}(6) 2.465(5) ; \mathrm{O}(1)-\mathrm{Ta}-\mathrm{O}$ (2) 84.9 (2), $\mathrm{O}(1)-\mathrm{Ta}-\mathrm{N}(3)$ 175.1(2), $\mathrm{O}(1)-\mathrm{Ta}-\mathrm{N}(4)$ 89.2(2), $\mathrm{O}(1)-\mathrm{Ta}-\mathrm{N}(5) 94.9(2), \mathrm{O}(1)-\mathrm{Ta}-\mathrm{N}(6)$ 91.9(2), O(2)-Ta-N(3) 94.1(2), O(2)-Ta-N(4) 164.7(2), O(2)-Ta-N(5) $91.5(2), \mathrm{O}(2)-\mathrm{Ta}-\mathrm{N}(6) 79.2(2), \mathrm{N}(3)-\mathrm{Ta}-\mathrm{N}(4) 90.5(3), \mathrm{N}(3)-\mathrm{Ta}-\mathrm{N}(5)$ 89.9(3), $\mathrm{N}(3)-\mathrm{Ta}-\mathrm{N}(6) 93.2(2), \mathrm{N}(4)-\mathrm{Ta}-\mathrm{N}(5)$ 103.1(2), $\mathrm{N}(4)-\mathrm{Ta}-\mathrm{N}(6)$ 86.0(2), $\mathrm{N}(5)-\mathrm{Ta}-\mathrm{N}(6) 170.3(2), \mathrm{Ta}-\mathrm{O}(1)-\mathrm{C}(11) 130.3(4), \mathrm{Ta}-\mathrm{O}(2)-$ $\mathrm{C}(21) 132.5(3)$.
insensitive to the bulk of the $3,3^{\prime}$-substituents in these compounds. The solid state structures of $(S)-4$ (Fig. 1), $(R)-6$ and (R, S) $-7, \S$ confirm the presence of coordinated $\mathrm{Me}_{2} \mathrm{NH}$. All three compounds possess a pseudo-octahedral geometry about the metal center with the amine group cis to both aryloxide oxygen atoms. The structural parameters are essentially identical for all three compounds although the solid-state structure of $(R)-6$ contained a disorder of the Ta atom along the amideamine axis.

Addition of SiCl_{4} to a hydrocarbon solution of (S)-4 leads to the formation of a mixture of $(S)-\mathbf{9}$ and (S)-10 (Scheme 3, Fig. 2).§ The formation of (S)-10 appears to result from (S)-9 reacting with excess HCl that is generated in the $\mathrm{Me}_{2} \mathrm{NH}-$ catalyzed amide/chloride replacement reaction. It has proven difficult to physically separate and characterize (S)-9 and $(S)-\mathbf{1 0}$, although a few crystals of (S)-10 were obtained from benzene-pentane solutions. Both compounds also have essentially the same NMR spectroscopic properties. Treatment of a $\mathrm{C}_{6} \mathrm{D}_{6}$ solution of the $(S)-\mathbf{9},(S)-10$ mixture with $\mathrm{Bu}_{3} \mathrm{SnH}$ in the presence of PMe_{3} leads to a species which we formulate as the monohydride (S)-11 (Scheme 3). The ${ }^{1} \mathrm{H}$ NMR spectrum of (S)-11 contains a $\mathrm{Ta}-\mathrm{H}$ resonance as a doublet of doublets at $\delta 22.0\left({ }^{2} J_{\mathrm{H}-\mathrm{P}}=92\right.$ and 95 Hz$)$. Two SiMe_{3} resonances for the binaphthoxide ligand are also present. The ${ }^{31} \mathrm{P}$ NMR spectrum of (S) - $\mathbf{1 1}$ also shows non-equivalent phosphine ligands. Previous work with monodentate aryloxide

(S)-11

Scheme 3

Fig. 2 Molecular structure of $(S) \mathbf{- 1 0}$ showing the atomic numbering scheme. Selected interatomic distances (\AA) and angles $\left({ }^{\circ}\right): \mathrm{Ta}-\mathrm{O}(1)$ 1.889(6), $\mathrm{Ta}-\mathrm{O}(2) 1.893(7), \mathrm{Ta}-\mathrm{Cl}(3) 2.420$ (3), $\mathrm{Ta}-\mathrm{Cl}(4) 2.431$ (3), $\mathrm{Ta}-$ $\mathrm{Cl}(5)$ 2.362(2), $\mathrm{Ta}-\mathrm{Cl}(6) 2.379(2) ; \mathrm{O}(1)-\mathrm{Ta}-\mathrm{O}(2) 89.8(3), \mathrm{O}(1)-\mathrm{Ta}-\mathrm{Cl}(3)$ 89.8(2), $\mathrm{O}(1)-\mathrm{Ta}-\mathrm{Cl}(4)$ 173.4(2), $\mathrm{O}(1)-\mathrm{Ta}-\mathrm{Cl}(5) 96.0(2), \mathrm{O}(1)-\mathrm{Ta}-\mathrm{Cl}(6)$ $90.0(2), \mathrm{O}(2)-\mathrm{Ta}-\mathrm{Cl}(3) 176.3(2), \mathrm{O}(2)-\mathrm{Ta}-\mathrm{Cl}(4) 93.2(2), \mathrm{O}(2)-\mathrm{Ta}-\mathrm{Cl}(5)$ 89.5(2), $\mathrm{O}(2)-\mathrm{Ta}-\mathrm{Cl}(6) 93.0(2), \mathrm{Cl}(3)-\mathrm{Ta}-\mathrm{Cl}(4) 87.6(1), \mathrm{Cl}(3)-\mathrm{Ta}-\mathrm{Cl}(5)$ $86.9(1), \mathrm{Cl}(3)-\mathrm{Ta}-\mathrm{Cl}(6) 90.7(1), \mathrm{Cl}(4)-\mathrm{Ta}-\mathrm{Cl}(5) 89.9$ (1), $\mathrm{Cl}(4)-\mathrm{Ta}-\mathrm{Cl}(6)$ $84.0(1), \mathrm{Cl}(5)-\mathrm{Ta}-\mathrm{Cl}(6) 173.5(1), \mathrm{Ta}-\mathrm{O}(1)-\mathrm{C}(21) 135.7(6), \mathrm{Ta}-\mathrm{O}(2)-$ C(11) 134.7(6).
ligands has shown that seven-coordinate mono-, di- and trihydrides adopt a pentagonal bipyramidal structure with trans-axial aryloxide oxygen atoms. The assigned structure for $(S)-\mathbf{1 1}$ (axial O and Cl) is, therefore, based upon these previous results and the spectroscopic data.

In an attempt to avoid the formation of $(S) \mathbf{- 1 0}$, solid $(S) \mathbf{- 4}$ was gently heated under vacuum to remove $\mathrm{Me}_{2} \mathrm{NH}$ leading to the amine-free (S)-8. Unfortunately treatment of $(S)-\mathbf{8}$ with SiCl_{4} generated a complex mixture resulting from incomplete amide replacement. Apparently for $(S)-\mathbf{8}$ the lack of coordinated $\mathrm{Me}_{2} \mathrm{NH}$ leads to poor catalysis of the chloride replacement reaction.

Acknowledgements

We thank the National Science Foundation for financial support of this research.

Notes and references

\ddagger Selected spectroscopic data: NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}, 30^{\circ} \mathrm{C}\right)$ aromatic signals unless indicated: ${ }^{1} \mathrm{H}:(S)-4: \delta 8.12$ (s), 7.77 (d), 6.82-7.20; 3.19 (s, NMe_{2}); 1.87 (br, NHMe e_{2}); $0.47\left(\mathrm{~s}, \mathrm{SiMe}_{3}\right) .5: \delta 8.09(\mathrm{~s}), 7.63-7.76(\mathrm{~m})$, 6.86-7.25; 3.14 (s, NMe_{2}); 1.98 (s, NHMe $)_{2}$); 0.70 (s), 0.69 (s, SiMe ${ }_{2} \mathrm{Ph}$). (R)-6: $\delta 7.88(\mathrm{~s}), 7.72(\mathrm{~m}), 7.40(\mathrm{~d}), 6.81-7.30 ; 2.89\left(\mathrm{~s}, \mathrm{NMe}_{2}\right) ; 1.81(\mathrm{~s}$, NHMe $) ; 1.00\left(\mathrm{~s}, \mathrm{Si} M e \mathrm{Ph}_{2}\right) .(R, \mathrm{~S})-7: \delta 8.12(\mathrm{~s}), 7.85-8.12(\mathrm{~m}), 7.44(\mathrm{~d})$, 7.29 (d), 7.10-7.16 (m), 6.86-6.97; 2.70 (s, NMe_{2}); 1.79 (s, NHMe N_{2}). (R)8: $\delta 8.14$ (s), 7.78 (d), 7.28 (d), 7.08 (t), 6.89 (t); 3.07 (s, NMe_{2}); 0.48 (s , SiMe_{3}). (S)-9 and (S)-10: $\delta 8.23$ (s), 7.65 (d), 6.65-7.16; 6.77 (br, NH)
2.07 (br, NMe_{2}); $0.77\left(\mathrm{~s}, \mathrm{SiMe}_{3}\right) .(S)-\mathbf{1 1}: \delta 22.0\left(\mathrm{dd},{ }^{2} J_{\mathrm{H}-\mathrm{P}}=92,95 \mathrm{~Hz}\right.$, $\mathrm{Ta}-\mathrm{H}) ; 8.24$ (s), 6.67-8.41; 1.74 (br, NMe_{2}); 1.36 (d), 1.00 (d, ${ }^{2} J_{\mathrm{H}-\mathrm{P}}=9.2$ $\mathrm{Hz}, \mathrm{PMe}_{3}$); $0.81(\mathrm{~s}), 0.39\left(\mathrm{~s}, \mathrm{SiMe}_{3}\right) .{ }^{13} \mathrm{C}:(S)-4: \delta 164.9(\mathrm{Ta}-\mathrm{O}-\mathrm{C}) ; 46.7$ $\left(\mathrm{NMe}_{2}\right) ; 40.5\left(\mathrm{NHMe}_{2}\right) ;-0.1\left(\mathrm{SiMe}_{3}\right) .(R)-5: \delta 165.0(\mathrm{Ta}-\mathrm{O}-\mathrm{C}) ; 47.1$ $\left(\mathrm{NMe}_{2}\right) ; 39.6\left(\mathrm{NHMe}_{2}\right) ;-0.8,-1.4\left(\mathrm{SiMe}_{2} \mathrm{Ph}\right) .(R)-6: \delta 165.8(\mathrm{Ta}-\mathrm{O}-$ C); $46.9\left(\mathrm{NMe}_{2}\right) ; 40.9\left(\mathrm{NHMe}_{2}\right) ;-2.1\left(\mathrm{SiMePh}_{2}\right) .(R, \mathrm{~S})-7: \delta 165.7(\mathrm{Ta}-$ O-C); 46.1 (NMe_{2}); $40.0\left(\mathrm{NHMe}_{2}\right) .(S)-8: \delta 164.9$ (Ta-O-C); 45.6 $\left(\mathrm{NMe}_{2}\right) ;-0.1\left(\mathrm{SiMe}_{3}\right) .(S)-\mathbf{9}$ and (S)-10: $\delta 163.0$ (Ta-O-C); 35.8 $\left(\mathrm{NMe}_{2}\right) ; 0.4\left(\mathrm{SiMe}_{3}\right) .{ }^{31} \mathrm{P} 11: \delta 10.9\left(\mathrm{~d},{ }^{2} J_{\mathrm{PP}}=42.0 \mathrm{~Hz}, \mathrm{PMe}_{3}\right) ; 3.7(\mathrm{~d}$, $\left.{ }^{2} J_{\mathrm{PP}}=42 \mathrm{~Hz}, \mathrm{PMe}_{3}\right)$.
§ Crystal data: For (S)-4 at $193 \mathrm{~K}: \mathrm{TaN}_{4} \mathrm{O}_{2} \mathrm{Si}_{2} \mathrm{C}_{34} \mathrm{H}_{53}, \quad M=786.95$, space group $P 2_{1} 2_{1} 2_{1}$ (no. 19), $a=11.0515(3), \quad b=15.2435(4)$, $c=21.8989(5) \AA, V=3689.2(3) \AA^{3}, D_{\mathrm{c}}=1.417 \mathrm{~g} \mathrm{~cm}^{-3}, Z=4$. Of the 8380 unique reflections collected $\left(8.00 \leqslant 2 \theta \leqslant 55.00^{\circ}\right)$ with Mo-K α radiation $(\lambda=0.71073 \AA)$, the 8380 with $F_{\mathrm{o}}{ }^{2}>2 \sigma\left(F_{\mathrm{o}}{ }^{2}\right)$ were used in the final least-squares refinement to yield $R\left(F_{\mathrm{o}}\right)=0.045$ and $R_{\mathrm{w}}\left(F_{\mathrm{o}}{ }^{2}\right)=0.088$. For $(R)-6$ at $173 \mathrm{~K}: \mathrm{TaN}_{4} \mathrm{O}_{2} \mathrm{Si}_{2} \mathrm{C}_{72} \mathrm{H}_{79}, M=1269.58$, space group $C 222_{1}$ (no. 20), $a=11.4866(2), \quad b=20.5325(4)$, $c=26.7517(5) \AA, \quad V=6309.4(4) \AA^{3}, D_{\mathrm{c}}=1.336 \mathrm{~g} \mathrm{~cm}^{-3}, Z=4$. Of the 7930 unique reflections collected $\left(8.00 \leqslant 2 \theta \leqslant 57.42^{\circ}\right)$ with $\mathrm{Mo}-\mathrm{K} \alpha$ radiation $(\lambda=0.71073 \AA)$, the 7930 with $F_{\mathrm{o}}{ }^{2}>2 \sigma\left(F_{\mathrm{o}}{ }^{2}\right)$ were used in the final least-squares refinement to yield $R\left(F_{\mathrm{o}}\right)=0.040$ and $R_{\mathrm{w}}\left(F_{\mathrm{o}}{ }^{2}\right)=0.073$. For $(R, S)-7$ at $173 \mathrm{~K}: \mathrm{TaN}_{4} \mathrm{O}_{2} \mathrm{Si}_{2} \mathrm{C}_{70} \mathrm{H}_{71}, \quad M=$ 1237.49, space group $P 2_{1} / c$ (no. 14), $a=11.6987(2), b=18.2575(4)$, $c=28.1025(5) \AA, \beta=94.759(1)^{\circ}, V=5981.7(4) \AA^{3}, D_{\mathrm{c}}=1.374 \mathrm{~g} \mathrm{~cm}^{-3}$, $Z=4$. Of the 14457 unique reflections collected $\left(8.00 \leqslant 2 \theta \leqslant 55.70^{\circ}\right)$ with Mo-K α radiation $(\lambda=0.71073 \AA)$, the 14457 with $F_{\mathrm{o}}{ }^{2}>2 \sigma\left(F_{\mathrm{o}}{ }^{2}\right)$ were used in the final least-squares refinement to yield $R\left(F_{\mathrm{o}}\right)=0.048$ and $R_{\mathrm{w}}\left(F_{\mathrm{o}}{ }^{2}\right)=0.077$. For $(S) \mathbf{- 1 0}$ at $173 \mathrm{~K}: \mathrm{TaCl}_{4} \mathrm{NO}_{2} \mathrm{Si}_{2} \mathrm{C}_{31} \mathrm{H}_{39}$, $M=836.59$, space group $C 2$ (no. 5), $a=27.604$ (2), $b=12.7559(7)$, $c=11.549(1) \AA, \beta=100.591(3)^{\circ}, V=3997.4(9) \AA^{3}, D_{\mathrm{c}}=1.390 \mathrm{~g} \mathrm{~cm}^{-3}$, $Z=4$. Of the 8683 unique reflections collected $\left(8.00 \leqslant 2 \theta \leqslant 55.85^{\circ}\right)$ with Mo-K α radiation $(\lambda=0.71073 \AA)$, the 8683 with $F_{\mathrm{o}}^{2}>2 \sigma\left(F_{\mathrm{o}}{ }^{2}\right)$ were used in the final least-squares refinement to yield $R\left(F_{\mathrm{o}}\right)=0.054$ and $R_{\mathrm{w}}\left(F_{\mathrm{o}}^{2}\right)=0.130$. CCDC reference number 186/2089.

1 I. P. Rothwell, Chem. Commun., 1997, 1331; I. P. Rothwell, Acc. Chem. Res., 1988, 21, 153; J. S. Vilardo, M. A. Lockwood, L. G. Hanson, J. R. Clark, B. C. Parkin and I. P. Rothwell, J. Chem. Soc., Dalton Trans., 1997, 3353; B. C. Parkin, J. R. Clark, V. M. Visciglio, P. E. Fanwick and I. P. Rothwell, Organometallics, 1995, 14, 3002.

2 J. S. Vilardo, M. G. Thorn, P. E. Fanwick and I. P. Rothwell, Chem. Commun., 1998, 2425; M. G. Thorn, J. S. Vilardo, P. E. Fanwick and I. P. Rothwell, Chem. Commun., 1998, 2427; P. N. Riley, M. G. Thorn, J. S. Vilardo, M. A. Lockwood, P. E. Fanwick and I. P. Rothwell, Organometallics, 1999, 18, 3016.
3 S. Saito, T. Kano, H. Muto, M. Nakadai and H. Yamamoto, J. Am. Chem. Soc., 1999, 121, 8943; S. Saito, T. Kano, K. Hatanaka and H. Yamamoto, J. Org. Chem., 1997, 62, 5651.

4 R. Noyori, Asymmetric Catalysis in Organic Synthesis, Wiley, New York, 1994; S. S. Zhu, D. R. Cefalo, D. S. La, J. Y. Jamieson, W. M. Davis, A. H. Hoveyda and R. R. Schrock, J. Am. Chem. Soc., 1999, 121, 8251; K. M. Totland, T. J. Boyd, G. G. Lavoie, W. M. Davis and R. R. Schrock, Macromolecules, 1996, 29, 6114; T. J. Boyle, N. W. Eilerts, J. A. Heppert and F. Takusagawa, Organometallics, 1992, 11, 1112; N. M. Brunkan, P. S. White and M. R. Gagne, Angew. Chem., Int. Ed., 1998, 37, 1579.
5 P. J. Cox, W. Wang and V. Snieckus, Tetrahedron Lett., 1992, 33, 2253 and references therein
6 P. N. Riley, J. R. Parker, P. E. Fanwick and I. P. Rothwell, Organometallics, 1999, 18, 3579.

